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ABSTRACT. In this paper we consider the application of least squares princi- 
ples to the approximate solution of the Stokes equations cast into a first-order 
velocity-vorticity-pressure system. Among the most attractive features of the 
resulting methods are that the choice of approximating spaces is not subject to 
the LBB condition and a single continuous piecewise polynomial space can be 
used for the approximation of all unknowns, that the resulting discretized prob- 
lems involve only symmetric, positive definite systems of algebraic equations, 
that no artificial boundary conditions for the vorticity need be devised, and that 
accurate approximations are obtained for all variables, including the vorticity. 
Here we study two classes of least squares methods for the velocity-vorticity- 
pressure equations. The first one uses norms prescribed by the a priori esti- 
mates of Agmon, Douglis, and Nirenberg and can be analyzed in a completely 
standard manner. However, conforming discretizations of these methods re- 
quire C1 continuity of the finite element spaces, thus negating the advantages 
of the velocity-vorticity-pressure formulation. The second class uses weighted 
L2-norms of the residuals to circumvent this flaw. For properly chosen mesh- 
dependent weights, it is shown that the approximations to the solutions of the 
Stokes equations are of optimal order. The results of some computational ex- 
periments are also provided; these illustrate, among other things, the necessity 
of introducing the weights. 

1. INTRODUCTION 

Recently, there has been substantial interest in the use of least squares prin- 
ciples for the approximate solution of the Navier-Stokes equations of incom- 
pressible flow; for some examples of bona fide least squares methods, one may 
consult, e.g., [5, 8, 9, 11, 12, 19, 20, 21, 22, 23, 24, 28]. The computational 
results provided in these papers indicate that the methods considered are ef- 
fective; however, careful analyses of these methods indicate that they do not 
yield optimally accurate approximations. According to the theory of [7], the 
formulation and analysis of discretization methods for the Stokes problem are 
critical for the understanding of like methods for the Navier-Stokes equations. 
Thus, the main goal of this paper is to analyze least squares methods for the 
Stokes problem. 
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Here we develop two such methods that result in optimally accurate approx- 
imations. For the case of the important velocity boundary conditions, one 
method requires the introduction of mesh-dependent weights in the least squares 
functional in order to obtain optimal-order approximations using merely CO- 
finite element spaces. The other method, which is not practical since it requires 
the use of Cl-finite element spaces, is introduced in order to show the proper 
formulation of a method for which the use of weights in the functional is not 
necessary. For the formulation of our methods we cast the Stokes equations into 
a first-order system involving the velocity, vorticity, and pressure as dependent 
variables. In two dimensions, one has four unknown scalar fields, and in three 
dimensions their number increases to seven. However, the order of differenti- 
ation in each variable is one, so that there exists the possibility of discretizing 
the least squares minimization problem using merely continuous finite element 
spaces. The validity of this argument is one of the central subjects of this paper. 

Although there are other ways to cast the Stokes problem into a first-order 
system (see, e.g., [3] and [5]), for several reasons we prefer to work with the 
velocity-vorticity-pressure equations. First, we can directly approximate the 
vorticity variable. Also, the velocity-vorticity-pressure equations involve fewer 
variables. Lastly, there is a large group of standard finite element methods which 
use the vorticity as a primary variable and can be used for comparison with our 
methods. 

Least squares methods for elliptic boundary value problems of order 2m 
were studied in [6]. More recently, a least squares theory for elliptic systems of 
Agmon, Douglis, and Nirenberg type was developed in [2] and, in particular, the 
primitive variable Stokes problem was treated within this theory. Least squares 
methods for Petrovskii (see [27]) elliptic systems in the plane were considered 
in [29]. Least squares ideas have also been used for stabilization of standard 
saddle-point formulations of flow and elasticity problems; for results in this 
direction the reader may consult [3] and [1 5]. 

Compared to the classical mixed Galerkin formulation (see, e.g., [ 16] or [ 17]), 
the least squares methods considered here offer certain advantages, especially 
for large-scale computations. For example, 

the choice of approximating spaces is not subject to the LBB 
condition, and a single continuous piecewise polynomial space 
can be usedfor the approximation of all unknowns 

and 

its application to the Navier-Stokes equations together with, for 
example, a Newton linearization, results in symmetric, positive 
definite, linear algebraic systems, at least in a neighborhood of 
the solution. 

Thus, used in conjunction with a properly implemented continuation (with re- 
spect to the Reynolds number) technique, the method will only encounter sym- 
metric, positive definite, linear systems in the solution procedure. The solution 
of these systems can be accomplished effectively by, e.g., conjugate gradient 
methods. As a result, 

a method can be devised which requires no matrix assembly, even 
at the element level. 
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This is particularly important for large-scale computations since standard Galer- 
kin mixed methods produce nonsymmetric systems, which must then be solved 
by direct methods or by complex and nonrobust iterative methods. We also 
mention two other advantages of the least squares approach considered here. 
The first is that 

no artificial boundary conditions for the vorticity need be devised 
at boundaries where the velocity is specified. 

The second is that, unlike many other methods involving the vorticity, e.g., see 
[14] and [18], 

accurate vorticity and pressure approximations are obtained. 

The determination of the proper function spaces in which boundary value 
problems for the velocity-vorticity-pressure equations are well posed is crucial 
to the success of the methods considered here. The crucial issue is the choice 
of spaces for the dependent variables and the data that make the (elliptic) dif- 
ferential operator compatible with the boundary operator. If, for example, we 
assume an equal order of differentiability for all unknowns (as it may seemingly 
look appropriate for a first-order system), then compatibility of a first-order el- 
liptic operator in the plane with a given boundary operator can be established 
by verifying the Lopatinskii condition [29]. However, if the velocity-vorticity- 
pressure equations in two dimensions are supplemented with velocity boundary 
conditions, then the Lopatinskii condition does not hold. This is not surprising 
if one recalls that the vorticity is defined as the curl of the velocity and thus 
should not, in general, have the same order of differentiability. For some bound- 
ary conditions, e.g., prescribing the normal component of the velocity and the 
pressure, the Lopatinskii condition is satisfied, and such cases can be treated 
with the least squares theory developed in [29]. 

In order to formulate and study least squares methods with the important 
velocity boundary conditions and in three space dimensions, we need the more 
general theory of Agmon-Douglis-Nirenberg (ADN) [1]. This theory permits, 
even for a first-order system, to assume different orders of differentiability for 
the unknowns by assigning indices to each equation and unknown function. 
An elliptic boundary value problem is then considered to be well posed if it is 
possible to find a set of indices under which the Complementing Condition of 
[1] holds. These indices, if they exist, determine the proper function spaces for 
both the data and the solution of the boundary value problem. Whenever all 
unknowns are assigned the same index, the Complementing Condition for first- 
order systems in the plane is equivalent to the Lopatinskii condition; see [29]. 
In the three-dimensional case, although there is no equivalent to the Lopatin- 
skii condition, the velocity boundary condition poses the same problem: if an 
equal order of differentiability is assumed for all seven unknowns, then the 
Complementing Condition does not hold. 

Given a well-posed elliptic boundary value problem, we define the standard 
least squares functional to be the sum of the residuals of the equations measured 
in norms determined by the ADN index of the corresponding equation. The 
minimization of this functional is equivalent to solving a variational problem. 
Coercivity of this problem follows from the ADN a priori estimates, and its error 
analysis can be carried out in a completely standard manner. However, for each 
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nonzero equation index, the standard functional will include norms stronger 
than the L2-norm. Hence, a conforming discretization of such a least squares 
principle will require the use of continuously differentiable finite element spaces; 
this is a serious practical flaw. 

To circumvent this flaw, we introduce a mesh-dependent least squares func- 
tional where the residual of each equation is measured in the L2-norm multi- 
plied by a weight determined by the equation index and the mesh parameter h. 
The purpose of these weights is to modify the behavior of the L2-norm terms 
so that they now resemble, as h tends to zero, the behavior of the stronger 
norms prescribed originally by the ADN equation indices. A single piecewise 
polynomial finite element space which is merely continuous can now be used for 
all test and trial functions at the price of a more elaborate error analysis than 
in the standard case. The mesh-dependent least squares functional considered 
here is similar to the one in [2]. However, the latter is based on the primitive 
variable formulation of the Stokes problem and thus necessarily requires C1 
spaces for the conforming approximation of the velocity field. 

The paper is organized as follows. For brevity we state and prove most of the 
results for the two-dimensional case. In ?2, we introduce the velocity-vorticity- 
pressure equations and analyze the Complementing Condition for two different 
choices of boundary operators. Then, we extend the ADN a priori estimates 
for the first-order system to negative regularity indices. In ?3, we introduce the 
standard least squares principle and show that optimal convergence rates can 
be achieved for conforming discretizations. The mesh-dependent least squares 
functional is introduced in ?4. We show that for properly chosen weights, the 
minimization of this functional produces approximations which converge to 
smooth solutions of the Stokes equations at the best possible rate. In ?5, we 
consider least squares methods for three-dimensional problems. Most of the re- 
sults for the three-dimensional setting can be carried over from the correspond- 
ing two-dimensional results and, thus, we focus on the differences between the 
formulation and analysis of such methods in three dimensions and their two- 
dimensional counterparts. In ?6 we present some numerical results obtained for 
the two different boundary operators. The first operator corresponds to the ve- 
locity boundary condition and requires weights in the least squares functional. 
The importance of these weights is assessed by comparing the numerical results 
obtained with and without the weights. The second operator which satisfies the 
Lopatinskii condition and corresponds to the normal velocity-pressure boundary 
condition, provides an example of conforming discretizations of the standard 
least squares principle that result in a practical method. 

2. THE VELOCITY-VORTICITY-PRESSURE STOKES EQUATIONS 

Let Q E R2 be an open and bounded set with smooth boundary F. The 
Stokes equations are given by 

( 1 ) -Au + gradp = f, in Q, 
divu=O inQ, 

where u = (ul, u2) denotes the velocity, p the pressure, and f1 the body force. 
The system (1) is a uniformly elliptic system of total order 4. We recall that in 
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two dimensions we have two curl operators: 

curl = ( )toy curl u = U2x - Uly. 

The vorticity co is defined by co = curl u. Using the identity curl curlu = 
-Au+ grad div u, and in view of the incompressibility constraint div u = 0, one 
may replace the first equation in ( 1) by curl co+gradp = f1 . Let U = (to, p, u) . 
Then, the generalized velocity-vorticity-pressure form of the Stokes problem is 

/curl grad O ' co' [f, 
(2) YU = -1 0 curl = 2 F in Q, 

\O 0 div u f3 

(3) ifU=G onr. 

Here we examine two choices for the boundary operators. The first one imposes 
the velocity on the boundary, i.e., 

(4) Ml ?U (I on , 

where u? is a given function defined along F. The second boundary operator 
imposes the pressure and the normal component of velocity, i.e., 

(5) 82U=(uo) onF, 

where P0 and UO are given functions defined along F. For the solvability of 
the boundary value problems (2)-(4) and (2)-(5), the data must be subject to 
the compatibility conditions 

(6) ff3 dx = u . n ds 

and fAu f3 dx = fr UO ds, respectively. 
The boundary conditions (5) are considered here mostly because they satisfy 

the Lopatinskii condition, and accordingly the standard least squares approach 
will result in a practical method which can be analyzed in a familiar way. The 
boundary conditions (4) are more difficult to analyze and have presented seri- 
ous problems in the development of effective computational methods involving 
the vorticity as a dependent variable; see, e.g., [18]. Here we shall only con- 
sider homogeneous boundary conditions that are satisfied exactly by candidate 
solutions and their finite-dimensional approximations. Although less general, 
compared with the inclusion of inhomogeneous boundary conditions into the 
least squares functional, this setting eliminates some nonessential details from 
the error analysis. At the price of some tedious calculations, our results can be 
extended to the more general case. Indeed, another potential advantage of the 
least squares approach is that boundary conditions could be enforced in a weak 
sense through their inclusion in the least squares functional (see [2, 6, 29]). 

If f2 = f3-= 0, the boundary value problem (2) and (4) is equivalent to the 
Stokes problem (1) and (4) in primitive variable form. In order to guarantee 
the uniqueness of solutions of (2) and (4), one also has to impose an additional 
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constraint on the pressure. The usual choice is to require that the pressure have 
zero mean over Q, i.e., 

(7) Jpdx =0. 

With this assumption we can prove the following result. 

Proposition 1. The problem (2), (4), and (7) has a unique solution for all smooth 
data fi, f2, f3, and uo. 
Proof. Let to, p, and u be smooth functions which satisfy 

curl co + gradp = 0 in Q, 

(8) 
curlu-co=O in Q, 

divu = 0 in Q, 
u=O onr. 

The first equation in (8) implies that c and p must be harmonic functions. 
Taking the Laplacian of the second equation yields 

A curl u = curl(Au) = Aco = 0. 

Let us suppose that Au = 0; then, the boundary condition u = 0 on IF implies 
that u 0. If, on the other hand, we suppose that Au # 0, the identity 
curl(Au) = 0 implies that Au must be a gradient, i.e., Au = grad q for some 
q. Then the pair (u, q) solves the homogeneous Stokes problem 

-Au + gradq = 0 in Q, 
div u = 0 in Q, 

U=O onr, 

and we can infer that u _ 0. Now, from the second equation in (8), it follows 
that wo = curl u 0 and then from the first equation we have that grad p = 0. 
Then, (7) implies that p = 0. 0 

Uniqueness for the problem (2)-(5), (7) can be established in a similar way. 
Let us now define the necessary function spaces. We use 29(Q) to denote the 

space of smooth functions with compact support in Q and Q9(Q) to denote the 
restrictions of the functions in ? (Rn) on Q. For s > 0 we use the standard 
notation and definition for the Sobolev spaces Hs(Q) and Hs(r) with inner 
products and norms denotedby (., -)s,n and (., .)s,r and I IIs,a and I IIs,r, 
respectively. Often, when there is no chance for confusion, we will omit the 
domain Q from the inner product and norm designation. 

As usual, Hos(Q) will denote the closure of 9(Q) with respect to the norm 
1IL, ~,and Lo (Q) will denote the subspace of square integrable functions 

with zero mean. We set j(Q) = O(Q) n Lo(Q), .2(Q) = 9(Q) n L2(Q) 
and Hs(Q) = Hs(Q) n L2(Q). For negative values of s the spaces Hs(Q), 

Hos(Q), and Hs(Q) are defined as the closures of 9(Q2), 9(Q), and 0(Q) 
with respect to the norm 

(9) S sup a q dx 
qED(n) Jjqj1_S,n 
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where D(Q) = 9(Q), 9(Q), and 9(Q), respectively. We identify Hs(Q), 
Hos(Q), and Hs(Q) with the duals of H-s(Q), Ho`(Q), and H-s(Q), respec- 
tively; for s E R these spaces form interpolating families. By ( , *)(sl.sE) and 
11 * jj(s1,...,s,) we denote inner products and norms, respectively, on the product 
spaces Hs, (Q) x . x Hsn (Q); when all si are equal, we shall simply write 
(.,.)s, and 11 * Ils, Q 

2.1. The Agmon-Douglis-Nirenberg estimates. Let Y = {f.j}, i, j = 
1, .I. , N, denote an elliptic differential operator of order 2m and M = {f I}, 
I = 1, ... , m, j = 1, ... , N, denote a boundary operator. We consider the 
boundary value problem 
(10) Y(x)U=F inQ, 
(11) 8(x)U= G on F. 
Following [1], we assign a system of integer indices {s1}, si < 0, for the equa- 
tions and {tj}, tj > 0, for the unknown functions such that the order of Yj 
is bounded by si + tj. Then, the principal part 5P of Y is defined as all 
those terms 5?j with orders exactly equal to si + tj . The principal part MP is 
defined in a similar way by assigning nonpositive weights r1 to each row in M 
such that the order of M is bounded by r1 + tj . 

The Complementing Condition [1] is a local algebraic condition on the princi- 
pal parts 5P and MP of the differential and boundary operators which guaran- 
tees the compatibility of a particular set of boundary conditions with the given 
system of differential equations. This condition is necessary and sufficient for 
coercivity estimates to be valid; see [1]. Before introducing the Complementing 
Condition, some notation must be established. 

Let P be any point on the boundary F and let n be the unit outer normal 
vector to F at P. Let ; be any nonzero vector tangent to F at P. Let S' 
denote the adjoint matrix to 5P . We first require that the following condition 
is satisfied. 

Supplementary Condition on 5. First, det5P({) is of even degree 2m (with 
respect to {). Also, for every pair of linearly independent real vectors {, {', 
the polynomial det 5P (; + T{') in the complex variable T has exactly m roots 
with positive imaginary part. 

For any elliptic system in three or more dimensions, the Supplementary Con- 
dition is satisfied, i.e., the characteristic equation det5fP(; + Tn) = 0 always 
has exactly m roots with positive imaginary parts. In two dimensions, this 
condition must be verified for any given 5P . 

Let Tk+({) denote the m roots of det 5P ({ + zT') having positive imaginary 
part. Let 

m 

M+(;, T)= I(T- Tk({)). 
k=1 

Then, we have the following definition [1]. 

Complementing Condition. For any point P E F and any real, nonzero vector 
; tangent to F at P, regard M+(;, T) and the elements of the matrix 

N 

'Pj (4: + Tn)njX (; + Tn) 
j=1 
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as polynomials in T. The operators Y and M satisfy the Complementing 
Condition if the rows of the latter matrix are linearly independent modulo 
M+(:,, T), i.e., 

m N 
(12) C,Z4O'PY l 0 (mod M+) 

1=1 j=l 

if and only if the constants Cl all vanish. 

In [1], the following result is proved. 

Theorem 1. Assume that the system (10) is uniformly elliptic (and in 2D satisfies 
the Supplementary Condition) and assume that the boundary conditions (11) 
satisfy the Complementing Condition. Furthermore, assume thatfor some q > 0, 
U E rN Hq+tj(Q), F E f=N Hq-Si(Q), and G E nIm Hq-rj-12(]). Then, 
there exists a constant C > 0 such that 

N /N m N 

(13) E Ilujllq+tj,n < C E IFijjq-sjn + E 11G1 1q_r,_I12,r + E jjUjjjo,Q 
j=l \ i=l 1=1 j=l 

Moreover, if the problem (1 0)-(1 1) has a unique solution, then the L2 norm on 
the right-hand side of (13) can be omitted. 

The Complementing Condition rules out existence of wildly oscillating solu- 
tions which decay exponentially away from the boundary. Indeed, let us sup- 
pose that in a neighborhood of P the boundary F is flattened so that it lies 
on the plane z = 0. Then, on z > 0 we consider a homogeneous, constant- 
coefficient (frozen at P) system of partial differential equations correspond- 
ing to the principal part of the original system (10) with homogeneous (also 
constant-coefficient) boundary conditions corresponding to the principal part 
of the boundary operator (1 1): 

(14) YP(P)U=0 inz>0, 
(15) ,3P(P)U= 0 on z = 0. 

Now, let x = (x, y, 0) and s be any real vector in the plane z = 0. The 
Complementing Condition requires that all solutions to (14)-(15) of the form 
u = eix-v(z) must be identically zero, i.e., v 0_ . The ansatz u = eixcv(z) 
reduces (14)-(15) to a system of ordinary differential equations for v, which 
provides for an alternative way (see [26]) to verify the Complementing Condi- 
tion. 

2.1.1. The Complementing Condition for the velocity-vorticity-pressure equa- 
tions. In this subsection we discuss the Complementing Condition for the two- 
dimensional Stokes equations in velocity-vorticity-pressure form (2) with the 
velocity boundary conditions (4). 

Let us first assume equal order of differentiability for all unknown functions. 
Then we have to choose the indices for the equations and unknowns according 
to S1 = S2 = S3 = S4 = 0 and tl = t2 = t3 = t4 = 1 . The symbol of the principal 
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part of (2), according to these indices, is 

2 1 ? 0 

(16) 01 02 0 ? 

? ? 4I 42 

The determinant of the principal part is detYP({) = det() = _2 + 2) = 

-114 , and hence the uniform ellipticity condition 

Ce- 
I 

g I2m < I detYP (5) I < C, g I 2m 

holds with m = 2 and Ce = 1. It is easy to see that 5P also satisfies the 
Supplementary Condition. 

Let ; be a tangent vector to F; for simplicity, let 141 = 1 and InI = 1. 
Without loss of generality we may assume that the coordinate axes are aligned 
with the directions of { and n, so that { = (1, 0) and n = (0, -1). Then, 
(12) reduces to 

-C1T + C2 = (T - i)AI, C1 -C2T = (T - i)A2, 

where Al and A2 are arbitrary constants. Evidently, for Cl = i, C2 = 1 and 
Al = i, A2 = -1 the above identities hold, and therefore the Complementing 
Condition is not satisfied. 

Remark 1. This conclusion is not surprising, for if we assume an equal order 
of differentiability for all unknowns, then the term (-co) is not in the principal 
part of Y and the system corresponding to (14)-(15) decouples into the two 
independent systems: 

curl co + gradp = 0 

and 
curl u = 0, divu = 0 

with boundary conditions solely on u. Now, it is easy to see that for any n the 
functions 

= - sin(nx) exp(-ny), Pn = cos(nx) exp(-ny) 

satisfy the first equation, decay exponentially away from the boundary, but 
1(0n1i,n/11(n11o,n = 0(n). 

Let us now show that if we assume different orders of differentiability for 
the unknown functions, then the Complementing Condition will hold for the 
velocity boundary condition. We now choose the following indices: sI = 52 = 0, 
S3 = S4 = -1 and tl = t2 = 1, t3 = t4 = 2. The symbol of the corresponding 
principal part of (2) is then given by 

2 41 0 ? 

(17) yP _1 o2 0 0 

0 0 41 42 

As before, we find that detYP = _g2 + 42)2 = 141, and thus the uniform 
ellipticity condition and the Supplementary Condition clearly hold. Again, with- 
out loss of generality, we may assume that the coordinate axes are chosen so 
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that 4 = (1, 0) and n = (0, -1). Then, (12) can be reduced to 

(18) -C1T2 C2T = Al(T-i)2, 

(19) -CIT - C2 = A2(T - i)2. 

The right-hand side of (19) is a second-degree polynomial, and equality is pos- 
sible if and only if A2 = Ci = C2- 0. Hence, the Complementing Condition 
holds. 

For smooth solutions a), p, and u of the boundary value problem (2)- 
(4) and (7) this fact and the uniqueness result from Proposition 1 imply the 
following form of the a priori estimate (13): 

(20) IIWllq+l + lIP Iq+1 + jUujjq+2 < C(If1 llq + IIf2IIq+1 + IIf3IIq+1), 

where q > 0. When CO e H +l(Q), p E Hf+l(Q), and u e Hq+2(2)2 are 
solutions of (2)-(4) for fl e Hq(Q)2, f2 e Hq+l(Q), f3 E JJq+l( ,) U? - 

u2 = 0, the estimate (20) follows by a density argument. 

Remark 2. One can verify that the boundary operator (5) satisfies the Comple- 
menting Condition with either choice (16) or (17) for the principal part. 

Remark 3. The equal order of differentiability is implicitly assumed in the 
Lopatinskii condition. Indeed, this condition requires one to cast the first-order 
system into the canonical form U, + BUy + CU + F = 0 and then to verify an 
algebraic condition involving only the matrix B and the symbol of M. Conse- 
quently, the boundary value problem (2)-(4) cannot be treated within the least 
squares theory of [29]. 

The analysis of least squares methods with mesh-dependent functionals re- 
quires that the estimate (20) be extended to negative regularity indices q. Re- 
sults of this type hinge on the existence of a complete set of isomorphisms for 
the particular elliptic system. For example, a complete set of isomorphisms for 
Petrovskii systems is established in [27]. However, the problem (2)-(4), (7) is 
not of Petrovskii type. Nevertheless, we can still extend (20) for q < 0 using 
the idea of [27] of passing to the adjoint equation, using the observation that 
after a suitable permutation of the equations the problem (2)-(4), (7) becomes 
selfadjoint. 

Theorem 2. Let U = (co, p, u) E D = 9(Q) x (Q) x (Q)2, u = 0 on 1r, 
and let f1, f2, and f3 be defined by (2). Then, the a priori estimate (20) holds 
for all q e R. 
Proof. For the proof of this theorem we shall assume that ? corresponds to 
the system (2) where div is replaced by - div and the equations are permuted 
so that the first one becomes the last one. We introduce the product spaces 

Xs =Hs+l(Q) x HS+l(s() x [Hs+2(Q)]2 5 >0 

Ys = Hs+l(Q) x Hs+l (Q) x [Hs( )]2, s >0 

together with their respective dual spaces 

XS = H-(s+')(Q) x f-(s+l)(Q) x [H-(s+2)(g)]2 s > 0 
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For U E D the estimate (20) holds for all q > 0 and can be written as 

IIUIlxq < IIYUIlyq 

The operator Y: X, t > Y, together with (4) defines a selfadjoint boundary 
value problem, and therefore the estimate (20) will also hold for the solutions 
of the adjoint boundary value problem. We shall prove that 

IIUly; ' IIYUIIx; VU E D, s > 0. 

By the definition of the dual norm, uniqueness of the solutions to (2)-(4), (7) 
and by (20), 

||U||y = sup (U, H) - sup (U .SV) 
HED;H#4O jjHjjy, E;V II2'VIIYI 

< sup (S'U, V) - 

VED;V#O 11 VlIxss 

This establishes (20) for q < -2 and q > 0. For the intermediate values of q 
the result follows by interpolation. o 

3. THE STANDARD LEAST SQUARES FUNCTIONAL 

We now consider the finite element approximation of solutions of the velocity- 
vorticity-pressure formulation of the Stokes equations based on the minimiza- 
tion of a least squares functional that is defined in terms of the norms indicated 
by the ADN theory. We shall first address the general boundary condition (3), 
and then specialize the results to the specific boundary conditions (4) and (5). 
As we shall see, for the boundary condition (5), this results in a practical method 
having optimal accuracy. However, for the boundary condition (4), although 
conforming approximations are again optimally accurate, they require the use 
of continuously differentiable finite element functions, and therefore are not 
very practical. 

Let us assume that {si} = {s1, S2, S3, S4} and {tj} = {tl, t2, t3, t4} are 
indices for which the boundary operator (3) satisfies the Complementing Con- 
dition and that the problem (2)-(3) has a unique solution. (The latter assump- 
tion may require additional information of the type (7).) Then, we define the 
standard least squares functional for the problem (2)-(3) by 

((U) = IIcurl w + gradp - ,-2) + 11 curlu - c) - f2112s3 

+ 11 divu - kIIS4. 

Recall that deg2ij < si + tj; hence, minimization of (21) is meaningful over 
a suitable subspace U of Htl (Q) x Ht2(Q) x Ht3((Q) x Ht4(Q). The subspace 
U will depend on the particular boundary operator, i.e., it will be defined by 
requiring that homogeneous boundary conditions are satisfied. The least squares 
principle is then given by 
(22) 

seek U = (a), p, u) E U such that Of(U) < f(U) VU = (CO, pi, u) E U. 

Standard techniques of the calculus of variations may be used to deduce that 
any solution U of (22) necessarily satisfies the variational problem 

(23) find U e U such that ?/(U, V) =Y9(V) VV e U, 
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where, for U = (cl, p, u) and V = (q, q, v), 
(24) 

S4(U, V) = (curl wo + gradp, curl q + grad q)(-s1 ,-S2) 

+ (curlu - cl, curlv - q) _s + (divu, divv)_s4, 
S?(V) = (curl t + gradq, fl)(-s1 -S2) + (curlv - /, f2)-s3 + (divv, f3)-s4- 

As a result of the a priori estimates (13) and the fact that we have assumed that 
(2)-(3) have at most one solution, one can easily establish the existence and 
uniqueness of the solution of the variational problem (23). 

Proposition 2. The problem (23) has a unique solution U E U. This solution is 
the unique minimizer of the functional (21). 
Proof. Using (13) with q = 0, the fact that (2)-(3) have at most one solution, 
and the fact that the order of YS' is bounded by Si + tj, we find that 

Ci(IIw)II2 + IIpII2 + IIUiIIt3 + IIU2IIt4) 

(25) < Ilcurl cl + gradp112zl -S5 + 11 curlu - w112 53 + 11 div u112i4 

-=96(U, U), 

i.e., the form q(, *) is coercive on the space U x U. Continuity of the form 
is trivial and thus, by the Lax-Milgram lemma, the problem (23) has a unique 
solution U E U. By the definition of (23), this solution will also be the unique 
minimizer of the least squares functional (21). 01 

3.1. Discretization of the standard least squares principle. For the conform- 
ing discretizations of the standard least squares principle, we shall need finite- 
dimensional subspaces Sj of Htj(Q). These spaces are parametrized by a 
parameter h; for example, h is usually some measure of the grid size; the grid 
itself need not be uniform. We assume the following approximation property 
of the spaces Sj: there exists a d > 0 such that for every u E Hd+tj (Q) there 
exists an element vh E Sj such that for 0 < r < tj 

(26) Ilu - vhllr < Chd+tj-rIIuIId+tj. 

Let Uh = SI x S2 x S3 x S4; then the discretization of (22) is given by 

(27) seek Uh = ((Oh 5ph uh) E Uh 

such that f(Uh) < ?(U) VUh =(h 5 ph h fih E Uh. 

One easily sees that (27) is equivalent to the variational problem: 

(28) findUh E Uh such that q(Uh, Vh) = J(Vh) VVh E Uh; 

clearly (28) is a discrete version of (23). By assumption, Uh is a subspace 
of U; hence, the inequality (25) holds for all functions Uh E Uh. Thus, the 
discrete problem (28) is coercive, has a unique solution Uh, and this solution 
is the unique minimizer for the problem (27). We note that (28) corresponds 
to a linear system of algebraic equations with a symmetric, positive definite 
coefficient matrix. An estimate of the error U - Uh can now be deduced in a 
completely standard manner. 
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Theorem 3. Let U = (co, p, u) E U and Uh = ()h ,ph, uh) E Uh be the 
solutions of the problems (23) and (28), respectively. Assume that Sj, j = 
1, 2, 3, 4, satisfy the approximation property (26). Assume that for some q > 
0 c) E Hq+t1(Q), p E Hq+t2(Q), and u E Hq+t3(Q) x Hq+t4(Q). Let q = 

min{d,q}. Then, 

(29) ||N - 0)h IIt| + IIP _ph 
- 

t2 + Iuu 
_ 

Uh II(t3 t4) 

< Ch4(11IwII4+tl + 11PII1+t2 + IIUII(4+t3,4+t4)). 

Proof. Let lIUll2 = 1III21 + IIpII2 + IIuI2I , 4 . Using the orthogonality relation 
,4(U - Uh, Vh) = 0 VVh E Uh and the inequality (25), we find that 

CI||U_ UhII2 <,q7(U_Uh, U_-Uh) 

=Y6(U_Uh,U_Vh)+,Y6(U Uh,Vh_Uh) 

=, 7(U _Uh U-_Vh) < C211U Uhll IIU Vhll. 

Above, Vh is an arbitrary element of Uh; hence, 

||IU 
_ 

Uhll < C3 inf ||IU 
_ 

Vh||l. 

Now, (26) and 4 = min{d, q} implies that we can find Vh = (oh, qh, Vh) E Uh 
such that 

II U vh'II = (IIW _ Oh 112 + IIP - q-h 112 + IIU - Vh1t3,t4))1/2 

< h4(IIcwII+t, + lIP I1+t2 + IIUII(4+t3,c+t4)) 

which completes the proof of the theorem. U1 

The estimate (29) is optimal in the sense that if a component of the solution 
belongs to Hq+ti (Q), then h4 is the best possible rate of convergence for the 
error measured in the Hti (Q)-norm. 

3. 1. 1. Pressure-normal velocity boundary conditions. Let us now specialize the 
above results to the homogeneous boundary condition (5). According to ?2.1.1, 
we can choose the indices si = 0 and tj = 1 . Then, the least squares functional 
(21) involves only L2 (Q)-norms of the residuals of all the equations, i.e., we 
have that 

(30) f(U) = IIcurl w + gradp - fIIl + 11 curl u -c- f2I1I + 1 divu - f3112 

and U = HI(Q) x Ho'(Q) x HI(Q), where HI(Q) denotes the subspace of 
H1(Q) x H1(Q) whose members have normal components equal to zero on 
the boundary. Furthermore, for the conforming discretization of (23) one can 
employ finite-dimensional subspaces Sj of HI(Q). For example, we can use 
piecewise linear elements or, in general, any CO piecewise polynomial finite 
element space. For the sake of concreteness, let us choose piecewise quadratic 
finite element spaces. It is well known (see [13]) that for every function u 
in H3(.Q) there exists a finite element function vh such that I u - vhllr < 
Ch3-rIluI3 for r = 0 or 1. Hence, if we choose d = 2 in (26) and assume 
that q = 2 in Theorem 3, then (29) yields that the error estimate for piecewise 
quadratic approximations is given by 

(31) II10)hII + II Phil + llU-uhili < Ch2(1W 113 + 11PI13 + 1IU113). 
Clearly, this estimate is optimal for quadratic finite element spaces. 
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3.1.2. Velocity boundary conditions. Next we consider the case when (2) is sup- 
plemented with the homogeneous velocity boundary condition (4). According 
to ?2.1.1, now s3 = s4 = -1 and t3 = t4 = 2; we still have that sI = s2 = 0 
and tl = t2 = 1 . Thus, the standard least squares functional (21) now involves 
the HI (Q)-norms of the residuals of some of the equations, i.e., we have that 

(32) f(U) = ljcurl w + gradp - f1jj 1 + 1 curlu - cl - f211 + divu - f3112 

and U = HI (Q) x HI (Q) x (H2(Q)nHo1 (g2))2. This implies that for a conforming 
discretization, the velocity field should be approximated in finite-dimensional 
subspaces of H2 (Q). Hence, the straightforward conforming discretization of 
(23) in this case bears no direct advantage over discretizations of least squares 
principles based on the primitive variable Stokes equations (see [2]). We can 
conclude that from a practical point of view the standard least squares func- 
tional is appropriate only for those problems where the Complementing Condi- 
tion holds under the assumption of the equal order of differentiability. 

4. THE MESH-DEPENDENT LEAST SQUARES PRINCIPLE 

In the previous section we saw that the application of the standard least 
squares method to the velocity-vorticity-pressure form of the Stokes equations 
with velocity boundary conditions resulted in approximate methods that re- 
quired the use of continuously differentiable finite element functions. We now 
examine the possibility of devising a least squares method that allows the use of 
merely continuous finite element functions. Of course, for the velocity bound- 
ary conditions we cannot use the functional (30) instead of (32). The reason 
for this is that (30) was defined using indices si and tj for which the Comple- 
menting Condition does not hold with (4) and the ADN theory does not apply. 
In particular, and notwithstanding previous claims made in the literature, the 
inequality 

IIcurlo + gradp112+ 1 curlu -0w112+ 1 divu112 > C(IlwII2 + IIpII2 + IIuI12) 

does not hold for velocity boundary conditions. For example, let u = 0 and let 
co and p be conjugate harmonic functions. Then, 

IIcurlwa) + gradp112 + 11 curlu - w112 + 11 divuIU1 = 11wIIo2 

However, for harmonic functions it is not true, in general, that I I a I I o > C I co I I. 
(See also Remark 1 of ?2.1.1.) 

Thus, in order to take full advantage of the velocity-vorticity-pressure equa- 
tions, we shall consider a mesh-dependent functional which will involve only 
weighted L2-norms of the residuals. The choice of the mesh-dependent weights 
is dictated by the "inverse inequalities" which hold for a wide range of finite 
element spaces Sh; see [13]. Specifically, we have that for Vh E Sh C Hm(K2) 
and O < r < m 

(33) IIVhIIr < Ch rIIVhIIo, 

i.e., h5' jjvh 110 can "simulate" jjvh Il-Si. Hence, the H(S)-norm of the residual of 
the ith equation which appears in the standard functional (21) can be replaced 
by the L2-norm of the same residual multiplied by h2si. 
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After all norms in the standard least squares functional are replaced with 
properly weighted L2-norms, we obtain the mesh-dependent (or weighted) least 
squares functional 

yZh ( J - h25' "(Dy +PX - f1llo2 + h2S2 IIpY - (OX - fi2Ilo 

+ h253 curl u - c - f2112 + h2s4 11 divu - f3II1. 
If all equation indices are equal, one has the common and unimportant factor 
h2si and, insofar as minimization is concerned, the functional (34) is identical 
to the standard one (21). 

Using standard techniques of the calculus of variations, one can show, for 
any fixed value of h, that minimization of (34) over an appropriate space U 
is equivalent to the variational problem 

(35) find U E U such that Vh(U, V) = h(V) VV E U 

where U = (c, p, u), V =(,q, v), 
(36) 

h(U, V) - j 
(h2S1( h Oy +Px)(qx + qy) + h22(O +py)(-qx + qy)) dx 

+ j(h2S3 (curl u - co) (curl v - q) + h2s4 (div u) (div v)) dx, 

yh*(V) - f (h2S ($x + qy)]i1 + h2_2(-qx + qy)hl2 

+ h2S3 (curlv - q)f2 + h2s4 (div v)f3) dx. 

For the discretization of (35) we consider a finite-dimensional subspace Uh 
of U and pose the problem: 

(37) find Uh E Uh such that qh(Uh, Vh) = g(Vh) VVh E Uh, 

where Uh = ((ph , ph, Uh) and Vh = (q$h, qh, vh). Evidently, Uh is the mini- 
mizer of tfh (U) over Uh . 

4.1. Error estimates. The error analysis for the approximations Uh generated 
by the variational problem (37) is significantly more elaborate than the error 
analysis for the standard least squares method of ?3.1. In the earlier case, 
coercivity of the form (., *) stems directly from the ADN a priori inequality 
(13). For the form (36), such a conclusion cannot be drawn immediately, and 
proof of the stability of (36) requires the use of (20) with q < 0. In this regard 
we follow some ideas of [2]. 

Here, we consider homogeneous velocity boundary conditions; for more gen- 
eral treatments as well as for other boundary conditions, we refer to the methods 
given in [2] and [4]. With the appropriate indices sI = S2 = 0, S3 = S4 = - 1, 
tl = t2 = 1, and t3 = t4 = 2 for this boundary condition, the weighted least 
squares functional (34) becomes 

(38) f(U) = jj(y +Px -fllIo + f -(Ox +Py- f2112 () + h-2l curl u - c - f2112 + h-2 11 divu - f3IIo. 
By .Y. we shall denote the differential operators of the system (2); for example, 

21 = -/8ax and Y44 = &/9y. The orders of each % are, of course, 
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bounded by si + tj. We let Uj and Uh denote the jth component of the J 
solution of U = (cl, p, u) and its weighted least squares approximation Uh - 

(OhI ph, uh), respectively. 
We shall assume that the solution (cl, p, u) of (2) and (4) (with uo = 0) 

satisfies 

(39) (c), p, u) E U = Hd+l (Q) X ftd+1 x [Hd+2 (Q) n HI (Q)]2. 
In addition, we require that d be subject to the condition 

(40) max (2si- d) < min si. 
i= I,., 4=1 . 4 

For velocity boundary conditions we have that mini=, 4 Si = -1 and 
maxi=1.42si = 0 and hence, (40) requires that d > 1. The necessity of 
this restriction will become clear in the proof of Proposition 4 below. 

In contrast to the standard least squares method (32) for velocity boundary 
conditions, we can now choose to approximate each unknown in a subspace 
of HI . Therefore, we consider minimization of (38) over the following finite- 
dimensional space: 

(41) (Wh, ph, Uh) = Uh = S1 x S2 x S3 x S4 c H1(Q) x H(Q) x [Ho(Q)]2. 

Each space Sj in (41) will be required to approximate optimally with respect to 
the corresponding function space in (39), i.e., the inequality (26) must hold with 
the appropriate values of tj . Note that the required approximation properties of 
the spaces Sj do not imply higher smoothness properties of these spaces because 
the latter solely depend on the highest order of differentiation in the weighted 
least squares functional (38). 

We begin with a continuity-type of estimate for the solutions of the discrete 
variational problem (37). 

Proposition 3. Let U = (ao, p, u) E U be arbitrary functions, let fi, f2, and 
f3 be defined by (2), and let Uh = ((Oh, Ph, uh) E Uh be the corresponding least 
squares approximation given by (37). Then 

(42) qh (u - Uh, U - Uh)l/2 < hd(IIwII1d+l + IIPIId+I + IIUIId+2). 

Proof. The error U- Uh satisfies the orthogonality relation qh (U- Uh, Wh) - 

0, and therefore 
h (UU__U-U)l/2 <yh(UWhU Wh)l2 VWh E Uh. 

Let Wh = (oh , qh, vh); using the approximation properties of the spaces Sj, 
we can further estimate ' h (U - Wh, U - Wh) as follows: 

h - Wh, U 2 

(lIcurl(o - oh) - grad(p -qh)11 + h 211 curl(u - vh) - ( -_h)1 + h-211 div(u -_vh)112)1/2 

< COICO -ohlll + h-I |coi - ohilo + lIP -qhiil + h-l ilu - vhil) 

< Chd(llw)IId+l + IlP ld+l + IIUIld+2).- 

The next proposition establishes the stability of the form q(., *). 

Proposition 4. Let the spaces Sj be defined by (41) with d satisfying (40). Let 
q be a nonpositive number such that 

(43) max(2si - d) < q < minsi. 
l l 
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Then, for U and Uh as in Proposition 3, 

(4) 11 |l-(oIq+ 
+ lip _Ph |q+I +IIU _Uh lq+2< Ch -qqih (U_Uh U-_Uh) 1/2 

We postpone the proof of Proposition 4 until the end of this section. The 

final error estimate now easily follows. 

Theorem 4. Let U E U solve the problem (2)-(4), (7), and let q and d be 
defined as in Proposition 4. Then, the weighted least squares solution Uh E Uh 

satisfies 

(4 5) 11 ct - a)h ||q+I +IIP_ ph ||q+I +IIU_Uh ||q+2 <- Chd- (1(t|)||d+l +IllPld+1 +||U|d+2)- 

Proof. By (42) and (44) it follows that 

IIO -(Oh IIq+1 + IIP _ph IIq+1 + IIu - uh lq+2 < Ch-qih(U - Uh, U _ Uh)1/2 

< h -q inf qh(U_Wh, UWh)lI2 
WhEUh 

< Chd-q(jjIjj|Id+I + lIPIId+l + IlUlld+2). 0 

In Theorem 4 we must assume q < -1, i.e., (45) gives only L2-norm es- 

timates for the error in the vorticity and the pressure approximations. If the 
inverse inequality (33) holds for the spaces Sj, one can obtain stronger H1- 
norm estimates for these errors. 

Corollary 1. Suppose the hypotheses of Theorem 4 hold and that the inverse 
inequality (33) holds for the spaces S1 and S2. Then, 

(46) 11a) - wII1 QI < Chd(II(OIId+l + IIPIld+l + |llUld+2), 

(47) lp _phllIQ < Ch d( llwlld+l + IIPIId+1 + IlUlld+2). 

Proof. Using the approximation properties (26) and the estimate (45) with q = 
-1 , we find that 

IIC(O - a)h || 1 Q2 < Ila) _ h ll 1, a + 11 ah _ ohl 1 Q 
? C(hd"la)llwd+l + h' 11(h - _ qh +lo, Q) 
? C(hdII0t)||d+I + h-1 ( || _ oh |lo, Q + ||C)-_Ctgh |lo, Q)) 
? C(hd|la)lld+l + hd-q I(||a)|d+l + lIPIId+l + llUlld+2)) 

< Chd(IlIwIId+l + ||PIld+l + IlUlld+2). 

The estimate (47) is derived in an identical manner. Ol 

Let us now prove Proposition 4. Here we follow the ideas of [2]. 

Proof of Proposition 4. We apply (20) with q < -1 to the error U - uh to find 

that 

C1 (jj |w -CVh 112+ + Ip _ph 112+1 + llU-u - i2 

< ||curl(a - Oh) + grad(p -_p)112 + curl(u - uh) - (a) - ) 

+ || div(u -uh)12 

The terms on the right-hand side above are of the form I I >j Sij (Uj - Ujh)II q-si 
and thus the estimate (44) will follow if each one of these terms can be estimated 
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by h (U - Uh, U - Uh) . This can be accomplished by interpolation between 
the spaces HSi-d(Q) and L2(Q). By definition (9), 

Ej(Uy-UJh)~~E =i (euP - uhfi_ 
si-d 2 

where 2 is a space of smooth functions which is dense in Hd-si(Q) or 
fjd-sj(Q). The duality pairing which appears above is also meaningful as an 
L2 integral. Let fl E g(Q)2, f2 E 9(Q), and f3 E 9(Q). We can choose this 
space for f3 because of our earlier assumption that the, boundary conditions are 
satisfied exactly. In this case, Ej 4j (Uj - U0) = div(u - uh) has zero mean, 
and the supremum in the corresponding dual norm has to be taken with respect 
to 9(Q). Therefore, f3 meets the compatibility condition (7) for the Stokes 
problem (2)-(4), and the system 

curl q + grad q = f, in Q, 

(48) curlv- q = f2 in Q, 
divv = f3 in Q, 

V=03 onF 

will have a unique solution for every smooth right-hand side in the indicated 
spaces. If the boundary conditions were not exactly satisfied, one would have 
to consider an arbitrary smooth function f3. Then the system (48) must be 
modified (see [2, 29]) in order to guarantee its solvability. 

Now, let V = (q$, q, v) be the solution of (48) with only one, say fi, nonzero 
right-hand side, and let Vh denote the least squares approximation to V com- 
puted by (37). We use orthogonality of the errors, definition (36), and the esti- 
mates (42) and (20) to find an upper bound for the term (Ej 2j (Uj - U,h), f): 

(E-j( Uj - f) = h2i (h2s i i ( Uj-Uj) fi) 

= h 2si (h2Sk Zkj(Uj - Uh), fk) 

=h 2si (h2Sk Skj(Uj - Ug) ZkMV) 
k jm 

= h-25ih(U - Uh V) - h2si,Yh(U-U- , V-Vh) 

< Ch-2si(,Yh(U _ Uh Uh))l/2(y6h(V-Vh, V-) 

? Ch _2s(Yh (U _ Uh, U - Uh))l/2(11011d+l + lIqlId+l + 1IV1Id+2) 

< Ch d-2si(,_h(U-Uh, U -U )) / Ilfilld-si 

Therefore, 

Z Y((Uj - U0h) < Chd 2i(Y-h(U - uh, U h 
- 

l/2 

si-d 



ANALYSIS OF LEAST SQUARES FINITE ELEMENT METHODS 497 

For the estimate of Ej 5fj (Uj - UjW) in the norm of L2 (Q) we use the definition 
of the form ph(., ) to find 

Yj (Uj - Uh) < Ch-si(,qh(U - Uh, U -Uh))'2. 

1 0 

Now, the estimate for the (q -si)th norm can be found by interpolation between 
Hsi-d (Q) and H?(Q). For q chosen according to (43), one has 

si - d < q - si < 0, 

and if 
si- q 
d - si' 

then the space Hsi-qp() can be defined by interpolation (see [25]): 

[HO(Q), Hsi-d(=)]0 - H-si(Q2). 

The application of the interpolation inequality [25] yields 
0 ~~~~~1-0 

Z%( Uj-U. ) <C 2 (Uj-Uiz) E j (Uj-Uj k) 
q-si s-d i 0 

< Ch(d-2si)0h-si(l-o)(,6h(U _ Uh, U -U)) / 

= Ch /q(,h(U - Uh, U_ U))2 

Now (44) easily follows. O 

4.2. Application to some concrete finite element spaces. A few comments are 
now in order with regard to the error estimates. Let us suppose that S3 and S4 
are chosen to be finite element spaces of continuous piecewise quadratic func- 
tions with respect to a given regular (but not necessarily uniform) triangulation. 
Then, d = 1 and q must be chosen equal to -1 . For the approximations of 
the vorticity and the pressure it suffices to consider continuous piecewise linear 
elements. Then, the estimates (45), (46), and (47) yield 

(49) 11w0 - hIIP + lp phl + IIu-uhlll < Ch2(11|w112 + IIP112 + ||U113), 
(50) i110 - chlll < Ch(11w112 + IIPI12 + 1IU113), 
(51) lIp _phil < Ch(11w12 + IIPI12 + liUi13) 
for all solutions of (2) with sufficient regularity. Let us now suppose that SI 
and S2 are also chosen to be piecewise quadratic finite element spaces, so that 
all fields are approximated with the same discrete spaces defined with respect to 
the same grid. This will not change the error estimates, and if c and p are only 
in H2 (), then the rates in (50) and (51) are indeed the best one can expect 
for H2 functions, regardless of the approximation spaces used for the pressure 
and the vorticity. However, if w and p are more regular, then the rates in the 
error estimates (50) and (51) would be optimal only if piecewise linear elements 
were used for the approximations of the vorticity and the pressure. On the other 
hand, for smooth co and p one can speculate that quadratic elements might 
improve the convergence rates for the L2- and HI-error norms of w and p 
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to 3 and 2, respectively, despite the fact that this cannot be deduced from our 
error estimates. In ?6 we present numerical results which suggest that, at least 
computationally, for smooth solutions (co, p, u) convergence rates of the L2- 
and HI-norms of the errors for allfour fields are indeed 3 and 2, respectively. 

If we use cubic polynomials for the velocity, and quadratic or cubic poly- 
nomials for the vorticity and pressure, we have that d = 2, and then we may 
choose q such that -2 < q < -1 . Then, for sufficiently smooth solutions, by 
setting q = -I in (45), (46), and (47), we obtain the estimates 

1o - Cwhllo + IIP - philo + lu - uhll I < Ch3(11(0113 + IIP 113 + ||U|14), 

110 - hlI < Ch2(1IIw13 + 11PI13 + IIUI14), 

Ilp ph lll < Ch2(11w113 + 11PI13 + IIUI14). 
By setting q = -2 in (45), we can also get improved estimates in weaker norms, 
including the L2-norm for the velocity: 

jjw - ||hj-1 + Ilp -P ||- + Iu - uhilo < Ch4(jjcw013 + 11PI13 + ||U114). 
The requirement that -d < q < -1 implies that our theory does not cover 

the case of piecewise linear finite element spaces for the velocity. 

5. LEAST SQUARES METHODS FOR THE STOKES EQUATIONS IN 3D 

For practical applications it is important to extend the results of ??2-4 to 
the three-dimensional case. With minor modifications, virtually all results, es- 
pecially those concerning the error estimates for least squares methods, remain 
unchanged in three dimensions. Most of the modifications are due to the fact 
that the velocity-vorticity-pressure formulation of the Stokes equations in three 
dimensions involves seven unknowns and equations, and thus cannot be ellip- 
tic. Once the proper first-order system and boundary conditions are defined, the 
least squares theory can be easily extended to the three-dimensional case. For 
example, along the same lines as those developed in ?2, one can show that the 
Complementing Condition does not hold for the velocity boundary conditions 
(understood in the context of the velocity-vorticity-pressure equations in 3D) if 
an equal order of differentiability is assumed for all unknowns. In this section 
we shall only state the main results concerning the least squares in 3D, and for 
the details we refer to [4]. 

The velocity-vorticity-pressure Stokes equations in three dimensions are given 
by 

curl w + gradp = f in Q, 
(52) curlu- w = O in Q, 

divu = 0 in Q, 

where Q is an open and bounded set in R3 with smooth boundary F. One 
has seven unknown scalar fields and seven equations. It is easy to see that the 
system (52) is not elliptic in the sense of [1]. Hence, following [9] and [21], we 
add the seemingly redundant relation 

div co = 0. 

This brings the number of the equations to eight, and for the well-posedness of 
the system we must add one more unknown, or slack variable; see [ 10]. Although 
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the addition of this variable seemingly changes the differential equations, we 
shall see that in the end this variable vanishes identically. Thus, we consider the 
following generalized velocity-vorticity-pressure equations in three dimensions: 

curl w + gradp = f1 in Q, 
divw = f2 in Q, 

curlu + gradq - w = f3 in Q, 
divu = f4 in Q. 

One can show that for the differential operator Y in (53), det( g) 18 , i.e., 
(53) is an elliptic system of total order eight, which must be supplemented with 
four boundary conditions; in contrast, the primitive variable Stokes problem is 
a system of total order six and needs only three boundary conditions. Of course, 
in our context, we have the boundary condition on the velocity 

u = uo on F. 

These three boundary conditions suffice for the primitive variable formula- 
tion, but the velocity-vorticity-pressure formulation (53) requires one more. It 
is tempting to choose the fourth boundary condition to be the specification of 
the normal component of the vorticity on the boundary. Indeed, if u = uo on 
the boundary F, and if we assume that the definition of the vorticity holds all 
the way to the boundary, at least in the sense that w = curl u on F, then we 
have that 

(54) wcn=n.curluo onF, 

where n * curl u0 is computable from u0, i.e., n * curl u0 involves only tangential 
derivatives of the components of uo. 

However, we do not need to assume that the differential equation w * n = 
n * curl u holds at the boundary F if we instead choose for the fourth boundary 
condition 

(55) q$=0 on F, 

i.e., a condition on the slack variable q$. Note that if f3 satisfies div f3 = 0, 
as is true for the Stokes system (52), then q is a harmonic function, so that, 
using (55), we have that q = 0 everywhere. (If we instead use (54), we can still 
conclude that q = constant everywhere; in this case, in order to get a unique 
solution, we have to require that q have zero mean.) 

Here, we will adopt (55) as the fourth boundary condition. Since, for sim- 
plicity, we are considering only homogeneous boundary conditions, the four 
boundary conditions for the system (53) are given by 

(56) u=O, 4=0 onF. 

The addition of the seemingly redundant equatibn div w = 0 is crucial to the 
algorithm, as well as to its analysis. However, it is important to point out that 
the introduction of the slack variable 4 is purely for the purposes of analysis; 
the least squares algorithm we are about to introduce does not make use of 
this variable, i.e., it only involves wc, p, and u. In fact, we can carry out the 
analysis including the slack variable q$, and then specialize all results to the 
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case when q = 0. Thus, we obtain results for the system 

curl w + gradp = f, in n, 
divw =cf2 in 2, 

(57) ~~~~~~curlu - w=f3 inQK, 
divu = f4 in 2, 

with boundary condition 

(58) u=O onr 

under the assumptions that 

(59) divf3= 0 in Q. 

Of course, because of (56), we also have the compatibility assumption on f4: 

(60) jf4dx= 0, 

and in order to get a unique solution, we specify that 

(61) jpdx = 0. 

Note that the velocity-vorticity-pressure Stokes problem fits into the framework 
of (57)-(61). 

We now summarize some results for the velocity-vorticity-pressure equations 
which are of central importance for the formulation and analysis of the least 
squares methods in three dimensions. 

Proposition 5. Let U = (w, p, u). Then 
* For every solution (u, p) of the primitive variable Stokes problem, (w = 

curlu, p, u) is a solution of (57) and (58) with f2 = 0, f3 = 0, and f4 = 0, 
and for every solution U of the latter, (u, p) solves the Stokes problem. 

* The Complementing Condition holds for the boundary value problem (53) 
and (56) with the following weights: 

{t_l = (1, 1, 1, 1, 2, 2, 2, 2), 

1SX_ = (0, 0, 0, 0, -1, -1, -1, -1). 

* For any smooth right-hand sides satisfying (59) and (60), the problem (57), 
(58), and (61) has a unique solution U; if for q > 0, U is a solution that 
belongs to [Hq+l(Q)]3 x Hq+l(Q) x [Hq+2(Q) n Ho'(f?)]3, then there exists a 
constant C > 0 such that 

(62) lIWllq+l + lpPllq+l + llUllq+2 < C(jlfl ljq + jjf2jjq + Jjf3 jq+I + llf4llq+I)- 

* The estimate (62) can be extended to negative regularity indices q. 

5.1. The weighted least squares functional in 3D. For the velocity boundary 
conditions (58), the mesh-dependent least squares functional fh(U) in three 
dimensions is given by 

(63) fh(U) = Ilcurl w + gradp - f0llo + 11 divw - f2110 Q 

+ h2Ilcurlu - w - f3II + h 2j divu - f4112Q- 
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We consider minimization of (63) over a finite-dimensional subspace Uh of 

[1(Q2)]3 X H1l(Ql) X [H I (Q2)]3. 

The index d is again subject to the condition (40), and with the weights deter- 
mined in Proposition 5, we find that d should be at least 1. Then, for d > 1, 
we assume that the finite element spaces approximate optimally with respect to 
Hd+t-j(Q). Finally, let Uh = ((Oh, ph, uh) denote the minimizer of (63) out of 
Uh. Then, we have the following result. 

Theorem 5. Let -d < q < -1 . Let the hypotheses of Proposition 5 hold. Then 
there exists C > 0 such that 

(64) IIWW-wh JIq+l +IIp_ph IIq+l +IIuUh IIq+2 < Chd-q(lla) ld+1 [lP11d+ +11U11d+2)- 

Thus, the results in three dimensions are the same as those for two dimen- 
sions, and the discussions of ??2-4 for the latter case carry over virtually intact 
to the former case. 

6. NUMERICAL RESULTS 

We take for our domain the unit square Q = {0 < x < 1 0 < y < l} 
and we consider the generalized Stokes equations (2) where f1, f2, and f3 are 
given functions. We consider the two sets of boundary conditions (4) and (5) 
where uo, FP, and UO are given functions defined on F. We will define the 
various data functions by choosing an exact solution U = (w, p, u) and then 
substituting into the equations and the boundary conditions. 

In our examples we use BC1W to label results obtained with the weighted 
least squares functional for the velocity boundary condition (4). With BC1 we 
label results for the same boundary condition but obtained when the weights 
are removed from the functional. Finally, BC2 labels results for the standard 
least squares method with the boundary condition (5). 

Our numerical results were obtained using, for all unknowns, piecewise qua- 
dratic finite element spaces based on a uniform triangulation; for nonuniform 
grids we found virtually the same convergence rates. Hence, we expect that for 
the velocity boundary conditions convergence rates will be determined according 
to (49) if we use the weighted least squares functional. Convergence rates for 
the pressure-normal velocity boundary condition should be as in (31). For a 
computational study of the accuracy for the unweighted least squares functional 
we refer to [5]. 

Our computational results for the pressure-normal velocity boundary con- 
dition (5) involve inhomogeneous boundary conditions. In this case we use 
boundary interpolants of the data in the corresponding finite element spaces in 
order to define boundary conditions that could be satisfied by the finite element 
functions. This method of treating the boundary conditions did not introduce 
a noticeable change in the convergence behavior of the least squares approxi- 
mations. 

Here we only consider computational results for the exact solution given by 

U = u2 = sin(nx) sin(7ry), 
w = sin(7rx)exp(7ry), 
p = cos(7rx)exp(7y). 
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FIGURE 1. L2 errors vs. number of grid intervals in each di- 
rection. Velocity boundary condition: weighted vs. unweighted 
functional 
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FIGURE 2. HI errors vs. number of grid intervals in each di- 
rection. Velocity boundary condition: weighted vs. unweighted 
functional 

The homogeneous velocity boundary condition for this solution can be satisfied 
exactly, so that the error estimates hold unconditionally. The second reason 
to choose this solution is that a) and p are conjugate harmonic functions (see 
Remark 1 in ?2. 1. 1) with curl co+gradp = 0, and we expect that the elimination 
of the weights from the functional will lead to the noticeable reduction in the 
convergence rates. 
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FIGURE 3. L2 errors vs. number of grid intervals in each direc- 
tion. Velocity vs. normal velocity-pressure boundary condition 

Figures 1 and 2 give log-log plots of the L2 and HI errors, respectively, vs. 
the number of grid intervals in each direction for a uniform grid spacing. The 
solid line corresponds to the results obtained with the weighted least squares 
functional and the dashed line is for the results computed without the weights 
in the functional. (Note that in the figures, U = uI and V = u2 .) 

In Figures 3 and 4 we compare results obtained with the weighted least 
squares method for velocity boundary conditions (solid lines) with the results 
for the standard least squares method for pressure-normal velocity boundary 
conditions (dashed lines). 

The slopes of the curves in Figures 1 to 4 correspond to the rates of con- 
vergence; it is evident from the plots presented in Figures 1 and 2 that the 
addition of the weights to the least squares functional improves the asymp- 
totic convergence rates. From the plots in Figures 3 and 4 one can also infer 
that asymptotically the convergence rates of the weighted least squares approxi- 
mations for the velocity boundary condition are identical with the convergence 
rates for the normal velocity-pressure boundary condition and the standard least 
squares functional. 

In fact, conclusions drawn from Figures 1 to 4 can be supported by computing 
the slope of least squares straight line fits to the various curves in the figures. 
The results for these slopes are summarized in Table 1 (next page). 

The differences between the rates in the BC 1W and BC 1 columns suggest that 
the unweighted least squares results are approximately one order less accurate 
than the corresponding weighted ones. The nonoptimality of the approxima- 
tions computed without the weights is best seen in the vorticity component; 
recall the well-documented fact that methods which use the vorticity as a pri- 
mary variable often yield very poor approximations; see [18]. 
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FIGURE 4. H1 errors vs. number of grid intervals in each direc- 
tion. Velocity vs. normal velocity-pressure boundary condition 

We used the same degree polynomials based on the same grid for all vari- 
ables, since that is one of the advantages of the least squares approach. Ac- 
cording to the theory of ?4, we could have used one degree lower polynomials, 
i.e., piecewise linears, for the vorticity and pressure. On the other hand, we 
draw attention to the fact that the weighted least squares method produces re- 
sults which exhibit the expected convergence rates for the approximations of 
the velocity and approximately one order higher rates than is expected from 
(50) and (51) for the approximations of the vorticity and the pressure. That 
means all four fields are approximated with the same order although one can- 
not infer this from the error analysis in ?4. In fact, from Table 1 we can see 
that the rates under the BC 1W columns are roughly the same as the rates under 
the BC2 columns, and for the latter the error estimates (31) indeed imply that 
all four fields should be approximated with the same order. Currently, we are 
unable to give a rigorous justification of this fact, and it is not clear whether 
such justification can be obtained along the same lines as for the error estimates 
in ??2-4. However, based on the computational evidence, one can argue that the 

TABLE 1. Rates of convergence of the HI and L2 errors in the 
least squares finite element solution with and without the weights 

L2 error rates HI error rates 
Function BC1W BC1 BC2 BC 1 W BC 1 BC2 

u 3.64 2.71 3.11 2.15 2.03 2.04 
v_ 3.31 2.37 3.10 2.10 2.06 2.02 

wO 3.57 2.20 3.00 2.35 1.64 1.93 
P 3.11 2.34 2.98 2.37 1.64 1.97 
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weighted least squares method can possibly take advantage of the better finite 
element spaces used for the approximations of the vorticity and the pressure. 
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